Row stochastic inverse eigenvalue problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Nonnegative Inverse Eigenvalue Problem

Nonnegative matrices have long been a sorce of interesting and challenging mathematical problems. They are real matrices with all their entries being nonnegative and arise in a num‐ ber of important application areas: communications systems, biological systems, economics, ecology, computer sciences, machine learning, and many other engineering systems. Inverse eigenvalue problems constitute an ...

متن کامل

The Recursive Inverse Eigenvalue Problem

The recursive inverse eigenvalue problem for matrices is studied where for each leading principle submatrix an eigenvalue and associated left and right eigenvectors are assigned Existence and uniqueness results as well as explicit formulas are proven and applications to nonnegative matrices Z matrices M matrices symmetric matrices Stieltjes matrices and inverse M matrices are considered

متن کامل

on the nonnegative inverse eigenvalue problem of traditional matrices

in this paper, at rst for a given set of real or complex numbers  with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which  is its spectrum. in continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2011

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2011-24